alloc_hugepages(2) — Linux manual page
alloc_hugepages(2) System Calls Manual alloc_hugepages(2)
NAME
alloc_hugepages, free_hugepages - allocate or free huge pages
SYNOPSIS
void *syscall(SYS_alloc_hugepages, int key, void addr[.len], size_t len,
int prot, int flag);
int syscall(SYS_free_hugepages, void *addr);
Note: glibc provides no wrappers for these system calls,
necessitating the use of syscall(2).
DESCRIPTION
The system calls alloc_hugepages() and free_hugepages() were
introduced in Linux 2.5.36 and removed again in Linux 2.5.54.
They existed only on i386 and ia64 (when built with
CONFIG_HUGETLB_PAGE). In Linux 2.4.20, the syscall numbers
exist, but the calls fail with the error ENOSYS.
On i386 the memory management hardware knows about ordinary pages
(4 KiB) and huge pages (2 or 4 MiB). Similarly ia64 knows about
huge pages of several sizes. These system calls serve to map
huge pages into the process's memory or to free them again. Huge
pages are locked into memory, and are not swapped.
The key argument is an identifier. When zero the pages are
private, and not inherited by children. When positive the pages
are shared with other applications using the same key, and
inherited by child processes.
The addr argument of free_hugepages() tells which page is being
freed: it was the return value of a call to alloc_hugepages().
(The memory is first actually freed when all users have released
it.) The addr argument of alloc_hugepages() is a hint, that the
kernel may or may not follow. Addresses must be properly
aligned.
The len argument is the length of the required segment. It must
be a multiple of the huge page size.
The prot argument specifies the memory protection of the segment.
It is one of PROT_READ, PROT_WRITE, PROT_EXEC.
The flag argument is ignored, unless key is positive. In that
case, if flag is IPC_CREAT, then a new huge page segment is
created when none with the given key existed. If this flag is
not set, then ENOENT is returned when no segment with the given
key exists.
RETURN VALUE
On success, alloc_hugepages() returns the allocated virtual
address, and free_hugepages() returns zero. On error, -1 is
returned, and errno is set to indicate the error.
ERRORS
ENOSYS The system call is not supported on this kernel.
FILES
/proc/sys/vm/nr_hugepages
Number of configured hugetlb pages. This can be read and
written.
/proc/meminfo
Gives info on the number of configured hugetlb pages and
on their size in the three variables HugePages_Total,
HugePages_Free, Hugepagesize.
STANDARDS
Linux on Intel processors.
HISTORY
These system calls are gone; they existed only in Linux 2.5.36
through to Linux 2.5.54.
NOTES
Now the hugetlbfs filesystem can be used instead. Memory backed
by huge pages (if the CPU supports them) is obtained by using
mmap(2) to map files in this virtual filesystem.
The maximal number of huge pages can be specified using the
hugepages= boot parameter.
COLOPHON
This page is part of the man-pages (Linux kernel and C library
user-space interface documentation) project. Information about
the project can be found at
⟨https://www.kernel.org/doc/man-pages/⟩. If you have a bug report
for this manual page, see
⟨https://git.kernel.org/pub/scm/docs/man-pages/man-pages.git/tree/CONTRIBUTING⟩.
This page was obtained from the tarball man-pages-6.9.1.tar.gz
fetched from
⟨https://mirrors.edge.kernel.org/pub/linux/docs/man-pages/⟩ on
2024-06-26. If you discover any rendering problems in this HTML
version of the page, or you believe there is a better or more up-
to-date source for the page, or you have corrections or
improvements to the information in this COLOPHON (which is not
part of the original manual page), send a mail to
man-pages@man7.org
Linux man-pages 6.9.1 2024-05-02 alloc_hugepages(2)
Pages that refer to this page: syscalls(2), unimplemented(2)